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I. INTRODUCTION

There exists a large class of vibration problems for which the excita-

tions, or forcing functions, are random in nature and, therefore, are described

statistically. Typical problems include launch vehicle buffeting during the

transonic time of flight, random base-shake excitation of structures or com-

ponents during qualification and/or acceptance testing, and spacecraft solar

panel response analysis for acoustic excitation. The elements which generally

describe this class of problem are:

a. Multi-degree-of-freedom dynamic models, resulting in one or more

normal modes required in any analysis.

b. Multiple, random forces acting on the system, with the forces

described by frequency-dependent power spectral density functions

(PSDs).

c. Some degree of correlation between the forces, with resulting force

cross-correlations that are nonzero.

Traditional analysis procedures (e.g., Refs. 1-7) have employed simpli-

fying assumptions about one or more of the above problem components. Typical

assumptions have resulted in analyses which: (I) treat the system one mode at

a time, thus ignoring phasing between the different modes, and/or (2) deal

with only one force at a time, thus not including information about force

phasing, and/or (3) ignore the frequency-dependence of the force spectra by

treating them as constant throughout certain frequency bands. The primary

reason for making these assumptions, it seems, has been limitations in compu-

tational capabilities. With the advent of larger and faster supercomputers,

however, the development of a procedure for solving the aforementioned class

of problems, without making the traditional simplifying assumptions, became

possible.

The development presented herein is for linear systems subjected to

forcing environments made up of ergodic, random forces, which are represented

either as frequency-dependent auto- and cross-power spectral densities, force

time histories, or a combination thereof. The analysis procedure is developed

in a standard matrix formulation, and is in essence a combination of matrix



structural analysis methods and Gaussian random response theory. Several

example problems will illustrate typical applications of the procedure, as

well as provide comparisons with results from direct numerical solution of the

equations of motion. Development of the procedure, and the accompanying trial

runs with the example problems, indicated which problem parameters need to be

carefully chosen to maximize accuracy "s well as computational efficiency.
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II. RESPONSE TO RANDOM EXCITATION - A REVIEW

The class of problems we are considering involves excitations that are

random in nature and, therefore, must be treated by statistical means. These

excitations are nearly ergodic and, therefore, can be described by their

frequency-dependent auto- and cross-power spectral density functions (PSD and

cross-PSD respectively). This makes it possible to solve for the structural

response in the frequency domain.

The behavior of linear elastic structures, which include most launch

veiicles and spacecraft, can be described by the matrix differential equation

of motion

[M]{x(t)} + [C]{ '(t)} + [KI{x(t)} = {F(t)} (1)

In the above equation [M], [C], and [K] are, respectively, the mass, damping,

and stiffness matrices, {x(t)} is the displacement vector (dots denote

differentiation with respect to time), and {F(t)} is the vector of

externally applied forces.

Transforming to normal coordinates we obtain

[I{q(t)} + [2rn]{(t)} + [W2 {q(t)} = {F(t)) (2)

where

{x(t)) = [@]{q(t)} (3)

and [ ] is the matrix of mode shape vectors and {q(t)} is the vector of modal

displacements. In the above equations, we have assumed uncoupled modal damp-

ing, and the mode shape vectors have been normalized with respect to the mass

matrix such that

T[M] ] = [1] (4)
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By taking the Fourier transform of each term in Eq. (2) and using the

standard relationships for Fourier transforms of derivatives we obtain

2(W - 2 ) + i(2( w w)] {q(w)} = {f(w)} (5)
n n n

In the above equation, {q(w)} and {f(w)} are the Fourier transforms of {q(t)}

and [0] T{F(t)}, respectively. Solving for {q(w)}, we obtain

{q(w)} = [H(w)]{f(w)} (6)

where

NMwI =[1(2 w2 ) + i(2(w )]- (7)[H ] (n n + i2nn"

[H(w)] is the structure's modal frequency response (or admittance) function.

This matrix is diagonal with a typical term being

Hk'( =2 21 (8)

k W - w + i2(kWkW

The physical response correlation matrix is given by

[R ( ]=lim T/ {x(t)}{x(t + ))}T dt (9)

x T 4 0 D -T / 2

Substituting {x(t)} [0]{q(t)} yields

T/2
[R ( ) = lim - [ ]{q(t)}{q(t + )}T[€]Tdt (10)

x T-" -T/2~ ){xt+-r}d

T/2

R I = [ lim - {q(t)}{q(t + T)} dt (10)

LT-1- -T/2

[Oj[R ()][€OT

where [R ()] is the modal response correlation matrix.
q



It is shown in Ref. 8 that the auto- and cross-spectral density functions

of the responses, [S (w)], are related to the auto- and cross-spectral densityq

functions of the excitaticas, [Sf (w)], by

[S (W)i = [HMI f (w)]H(W)(12)q

In Eq. (12), [H (w)] is the complex conjugate of [H(w)], and [S (w)] andq

[Sf(w)] are the autc- and cross-power spectral density functions of the modal

responses and modal forces, respectively. Since the Fourier transforms of the

auto- and cross-correlation functions are the auto- and cross-power spectral

density functions, respectively, the inverse Fourier transform of Eq. (12) is

given by

[R () I [H* ()]Sf()][H(w)] eT dw (13)
q 2ir J

To obtain [Sf (w)] we begin with the modal force correlation matrix given

by

T/2

1 T
[Rf([)] = lim - {f(t)}{f(t + T)} dt (14)

T+- -T/2

Substitutipg {f(t)} = [ ]T{F(t)} we obtain

[Rf(t)] lim T/2 [W]T {F(t)}{F(t + )} T []dt (15)
fT+M T -T/2

T I IT/2

WT {F(t)}{F(t + r)} dt]

T-T/2

= [ ]TR F (OW (16)

where [R (T)l is the physical force correlation matrix.
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Since [Sf( )] is the Fourier transform of [Rf(T)], we obtain

[Sf(w)] = J [W]T[RF(0)][$]e-ROdt

T [lT[S()]F[I (17)

where

(SF(W)I = J [RF()]e- iWdt (18)

[S F()] is the physical force cross-PSD matrix. Substituting Eq. (17)

into Eq. (13) yields

[R q(T) 1 -(H*(w)][I T [S F ()][$][H(w)]) (9

q

where 4-( ) signifies the inverse Fourier transform of (). Substituting

Eq. (19) into Eq. (11) yields

[Rx(T)] = -1I([$][H*(w)][$ T [S F (w)I[O[H(w)][] T )  (20)

Taking the Fourier transform of both sides, we obtain

[Sx(W)] = [$][H*(w)][OT[SF(w)][$][H(w)][O] T (21)

This equation relates the physical response cross-PSD matrix to the physical

force cross-PSD matrix.

10



The mean square values of the responses are derived by setting t = 0 in

Eq. (9). Recalling that [R x(T)] and [Sx ()] are a Fourier transform pair,

and considering only the diagonal elements of [S (w), we obtainx

x =J SQ(w) dw (22)

where S U (w) signifies the Q-th diagonal element of [S (M)].
x

11
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Il. NUMERICAL IMPLEMENTATION

For numerical (computer) implementation, we must deal with the real and

imaginary elements of Eq. (21) separately. Thus, we factor the complex

matrices into their coincident (real) and quadrature (imaginary) components as

follows:

[SF (W)] = [CF (W)] + i[QF()] (23)

and

[H(w)] = [D(w)] - i[E(w)] (24)

where

2 2

D2 2 (25)
k = (W 2 w ) 2 + (2Ck kW)2

and

E ( 
2 CkcakW (26)

k = 2 _ 22 2

k + (2 kwkw)

are the k-th elements along the diagonals of [D(w)] and [E(w)], respectively.

Thus, Eq. (21) can be written as

[S x(w)] = [0]{[D(w)] + i[E(w)1}[0I T{[C ()] + i[QF( l)l}[O]{[D(w)] - i[E(w)]}[0] T

(27)

At this point, for convenience, we drop the matrix brackets, as well as the

(w), and keep in mind that all matrices except [$1 are frequency-dependent.

Thus, performing the required algebra, Eq. (27) becomes

S = [RCFR + RQFT - TQFR + TCFT] + i[RQFR - RCFT + TCFR + TQFT] (28)

13



where

R = D T (29)

and

T = ,E T (30)

Equation (28) can be written as

[Sx(W)I = [Cx(W)] + i[Qx(W)] (31)

where [Cx (w)] and [Qx(w)] are defined in Eq. (28) and we have reintroduced the

matrix brackets.

The diagonal elements of [C (W)] are the auto-spectra of the displace-x

ments. The cross-spectral information is contained in the off-diagonal ele-

ments of [C x()] and [Qx(w)] (the diagonal elements of [Qx()] are identi-

cally zero). Thus, mean square values of the responses of interest can be

derived from the diagonal elements of [C (w)].
x

The above development leads to displacement response power spectral

densities. Typical applications can call for the derivation of related

parameters such as accelerations, acceleration-based loads, or combinations

thereof. The power spectral densities of the system accelerations can be

computed by recalling the relations (Ref. 9)

0(4(t)) = icA(q(t)) (32)

and

(q(t)) = - w 2(q(t)) (33)

14



These allow us to write the acceleration-based trequency response functions as

[HA(w)] = - w 2 [H(w)] (34)

Equations (6) and (34) relate the Fourier transforms of the modal accelerations

to the Fourier transforms of the modal forces, i.e.

{q(w)} = [HA(w)]{f(w)} (35)

If power spectral densities of loads are required, and a loads transfor-

mation matrix, [LTMI, which recovers the loads according to

{L(t)} = [LTMI {x(t)} (36)

is available, then Eq. (21) becomes

[SL ()] = [LTMI[][HA*(w)][] T[S F()][ ][HA()][ ]T[LTM]T  (37)

or

[S (w)] = [LTM][S-(w)][LTM]
T

L x

Another common application is the "base-shake" vibration problem. The

extension to this type of configuration is straightforward and is presented in

Appendix A.

Typically, the number of forces, NF, applied to a system, and the

number of modes retained in the analysis, NM, are significantly less than

the number of degrees of freedom in the system. Using these facts when

solving Eq. (21) can result in a significant increase in computational

efficiency. This topic will be discussed at length later, when use of the

computer program is described.

It is also noted that, although the preceding development deals with

power spectra defined over both positive and negative frequency ranges,

practical applications are limited to the use of spectra defined over a

positive frequency range only. The procedure applies directly in these cases,

as long as consistency is maintained throughout.

15
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IV. TEST PROBLEMS

To establish confidence in the numerical implementation of the random

response analysis procedure, several test problems were solved. The first

test case consisted of a four-degree-of-freedom system (Fig. 1). The

structure was subjected to identical random forces applied to the first two

degrees of freedom. The force was derived from pressure measurements from a

buffet wind tunnel test. The use of the cross-spectrum will provide some

insight into the importance of using the cross-spectra in random response

analyses. Furthermore, having access to the time histories of the forces that

were used to produce the PSDs and cross-PSDs allowed for a direct comparison

of the subject procedure against results derived in the time domain.

The time domain analysis results were obtained by integrating the

equations of motion directly with a fourth-order Runga-Kutta procedure. The

integration step was 0.001 sec, and the record length was 30 sec. The mean

square values of the responses were then established as follows:

-: liT

2 = I x2(t) dt (38)x T T 0

where x(t) is the calculated response time history, x is the mean

square value and T = 30 sec. The frequency domain analysis used a frequency

increment of 0.5 Hz, and the analysis range was from 0.0 to 200 Hz. The

frequency increment was selected to yield at least four spectral lines between

the half-power points of each mode.

Table I lists the root-mean-square (RMS) displacement values derived with

three different methods: (i) direct numerical integration in the time domain,

(2) random response procedure with cross-spectra of forces included, and

(3) random response procedure without cross-spectra of forces; i.e., only the

auto-spectra (diagonal elements of [SF (J)) were used. The results

indicate that the responses derived with the frequency domain random response

procedure are in good agreement with those from the time domain analysis, when

the cross-spectrum of the forces was included in the analysis. In the case

17
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where only tht auto-spectra of the forces were used, however, we see that the

responses differ significantly-in this case they are lower by up to 27%.

In other cases, the- results derived by using only the force auto-spectra over-

prt dirted the time domain results (see test problem 2). In any case, the

degree of d iscrepaii'y between responses derived using cross-spectra and

reponses derived %ithout using the cross-spectra will depend on the degree of

correlat ion between the various torres.

For the second test problem the dynamic model consisted of the GPS

spacecraft coupled to the Delta 1I (6925) launch vehicle. Input forcing

functions were formulated from pressure measurements collected in a buffet

wind tunnel test which was performed using a rigid scale model of the launch

vehicle. The test was performed at the Arnold Engineering Development Center

in the 16T Propulsion Wind Tunnel. The scale model of the launch vehicle was

designed and manufactured by McDonnell Douglas Astronautics Company under

contract to the Air Force Space Systems Division. In the test, fluctuating

pressure measurements were taken using transducers which were located at

various stations along the launch vehicle model. These transducers were

distributed circumferentially as well (see Fig. 2). The forcing functions

were derived from these measured pressure readings by assigning an area to

each transducer (depending on its location) and by accounting for the effect

of model scale, which affects both the amplitude and frequency contents.

.

The coupled system dynamic model had 47 normal modes to 20 Hz , of which

5 were rigid-body modes (torsional rigid-body motion was not modeled). The

torces were applied to a portion of the length of the vehicle (see Fig. 3),

and responses were recovered at all degrees of freedom defining the spacecraft

dynamic model. For illustrative and comparative purposes, we will concern

ourselves here with spacecraft acceleration results, althoughi it is noted that

the subject procedure was used, for this particular system, to recover

spacecraft loads, r-lative displacements (clearance loss), and launch vehicle

*Delta 1I and Titan IV flight data obtained since these analyses were performed

indicate that significant excitation above 20 Hz exists. Current analysis
cutoff frequencies are near 40 Hz.

19
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accelerations and loads as well. It is further noted that, although the total

forcing environment applied to the coupled system was formulated from a

combination of wind-tunnel-derived forces (time histories) and flight-data-

based forces (power spectra), the random response analysis described herein

was performed using the wind-tunnel-derived force spectra alone so as to

provide a comparison with results derived in the time domain using the force

time histories directly.

Figures 4a, 4b, and 4c show a typical force time history, its power

spectral density, and one of its cross-power spectral densities, respectively.

Figure 5 shows typical response power spectral densities at three locations on

the spacecraft, including primary structure and appendage degrees of freedom.

Table 2 lists a comparison of typical resulting RMS values. The first column

shows time domain results obtained with Runge-Kutta integration, column 2

shows frequency domain results obtained with the random response analysis

procedure using selected force cross-spectra (i.e., cross-spectra resulting

from forces that were adjacent to each other were included in the force PSD

matrix, with the assumption being that correlation between forces separated by

more than one vehicle station would have minor effect). Column 3 shows results

derived with only the force auto-spectra. In this case results show that

omission of the force cross-spectra will cause an overprediction of responses

at some spacecraft locations, and a slight underprediction at other locations.
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Table 1. Test Problem Results

R-K( I ) RRP( 2 ) RRP( 3 )

X I  0.262 0.259 0.213
X 2  0.203 0.199 0.179
X 3  0.177 0.171 0.128
X4  0.134 0.131 0.096

Note: Values are inches RMS.

(1 Time domain Runge-Kutta integration
(2)Frequency domain with force cross-spectra
(3)Frequency domain without force cross-spectra

Table 2. Typical Spacecraft Response Values

RK ( I )  RRP(2) RRP(3)

S/C Motor X 0.133 0.134 0.137
Y 0.145 0.157 0.162

Forward Bulkhead X 0.268 0.276 0.280

Y 0.286 0.308 0.316

Solar Array X 0.253 0.258 0.233
Y 0.139 0.149 0.166

Antenna Tip X 4.65 4.59 4.20

Y 3.97 3.98 3.94

Note: Values are G's RMS

(1 )Time domain Runge-Kutta integration
(2)Frequency domain with selected force cross-spectra

(3 )Frequency domain without force cross-spectra

25
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V. PRACTICAL CONSIDERATIONS

Since the formulation and first application in late 1988 of the procedure

presented herein, there have been several Delta II flights and two Titan IV

flights. Data obtained from these flights and additional review of the wind

tunnel data indicate that the buffet excitation energy content is still

significant past the previously used analysis cutoff frequencies of 20 Hz.

Studies with both vehicles and their payloads indicate that analysis cutoff

frequencies in the 30 Hz to 40 Hz range are needed to obtain convergence of

spacecraft responses. Convergence of launch vehicle loads is configuration

dependent and typically occurs below 20 Hz. However, convergence studies

should still be performed for each new vehicle configuration and its payload.

To assure an adequately conservative prediction of launch vehicle and

spacecraft buffet loads, multiple Mach number and angle-of-attack cases need

to be analyzed. This is particularly true for the transonic time of flight.

It is not unusual to have different cases maximize loads in different areas of

the launch vehicle and spacecraft. Therefore, this requires that wind tunnel

data at multiple Mach numbers and angle-of-attack combinations be obtained and

the appropriate analyses be performed.

An additional practical consideration is the analysis frequency incre-

ment. A frequency increment that is too coarse can result in a significant

underprediction of loads. However, it is also possible that an

overprediction of responses can occur. It has been found that adequately

accurate predictions result if a frequency increment corresponding to four

spectral lines between a mode's half-power points is used. That is:

f= I (nn

where Af is the frequency increment, ?n is the critical damping ratio of

the mode and f is the natural frequency of the mode.
n

27



As a final note, the work presented herein has introduced the concept

and demonstrated the feasibility of performing buffet analyses in the time

domain. This requires that the forcing functions be available in the form of

time histories. This being the case, rather than converting the forcing

functions into the frequency domain, one may integrate the equations of motion

directly. The root-mean-square (RMS) values can then be computed from the

response time histories. Work to d-to indicates that 20 to 30 seconds

of response data are needed to establish RMS values that adequately charac-

terize the statistics of buffet response. This is consistent with the data

collected in both the Delta 11 and Titan IV wind tunnel tests. However, the

required lengths of the time histories are a function of the frequency content

of the time histories. Therefore, for each new configuration, convergence

studies should be performed.

Several factors make the calculation of buffet response in the time

domain an attractive proposition. First, the cost of calculating auto- and

cross-power spectral densities is avoided. Second, numerical integration

software packages that directly integrate the modal equations of motion are

readily available. And finally, the calculation of loads is simplified since

the time-phasing between the externally applied forces and the acceleration and

displacement responses can be accounted for exactly and in a straightforward

manner. Obviously, the choice of a time-domain or frequency-domain approach

depends on the form of the forcing function representation and the respective

costs. However, as demonstrated herein, both approaches are viable and each

approach has its own advantages.
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VI. SUMARY/CONCLUSIONS

A multi-force, mode-superposition random response analysis procedure has

been described. The procedure, which allows for the use of frequency-dependent

force power spectral densities and cross-power spectral densities, is a

combination of Gaussian random response theory and matrix structural analysis

methods. It can be used to analyze a wide variety of random vibration problems

which arise in the structural dynamics area. These include transonic buffet

loads analyses for launch vehicle/spacecraft systems, and base excitation

analyses typical of component vibration testing situations. Example problems,

which help to establish confidence in the procedure as well as to demonstrate

its use, were included. In addition, the concept of establishing buffet

responses in the time domain was introduced and its feasibility was demon-

strated on test problems, one of which was the Delta II/GPS system.

The accompanying FORTRAN computer program, as well as a guide describing

its use, are included as a stand-alone appendix. The program has been written

with sufficient flexibility so as to allow the user to adapt it to a wide

variety of situations and needs; however, the main components of the code are

written with an eye toward deriving maximum computational efficiency from

various situations which often arise when treating the aforementioned types of

problems.
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NOMENCLATURE

[C] = damping matrix

[CF (w) = real part of [SF ())

[Cx (w)] = real part of [S (w)]

ID(w)) = real part of [H()))

[E(w)] = imaginary part of [H(w)]

{t(t)} = vector of modal forces

{F(t)} = vector of physical forces

[H(w)] = diagonal matrix of modal admittance functions for displacement

[HA(w)] = diagonal matrix of modal admittance functions for acceleration

[H(w)] = matrix of physical admittance functions

1 = 1-1

[I] = identity matrix

[K] = stiffness matrix

[MI = mass matrix

N F = number of applied forces

NM = number of modes retained in analysis

{q(t)} = vector of modal displacements
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{(t)} = vector of modal velocities

{q(t)} = vector of modal accelerations

[QF()1 = imaginary part of [S F ()

[Qx(w)] = imaginary part of [S (w)]

[R f()] = correlation matrix of vector {f(t)}

[RF(T)l = correlation matrix of vector (F(t))

[R (T)l = correlation matrix of vector {q(t)}

q

[R (t)] = correlation matrix of vector {x(t)}
x

[S x()M = cross-power spectral density matrix of physical forces

[S (em)]I cross-power spectral density matrix of physical displacements
x

2
x2 = mean square value of x2

{x(t)} = vector of physical displacements

{x(t)} = vector of physical accelerations

= critical damping ratio

2
a = variance (square of standard deviation)

(01 = matrix of normal modes
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( - -th normal mode

[ F] = mode shape matrix for force application degrees of freedom

P( ) = Fourier transform of ( )

i- ( ) = inverse Fourier transform of ( )

w = analysis frequency (rad/sec)

= natural frequency (rad/sec)n

{ } = complex conjugate of { }

35



36



APPENDIX A

FORMULATION OF EQUATIONS OF MOTION FOR BASE EXCITATION

For base excitation where no relative motion between the support points

is allowed, the equations of motion for a linear elastic structure are

[MI{XABS}I + LCIjk REL} I [K]{x REL} {0} (A-i)

where

X ABS = absolute acceleration vector

kxE = relative velocity

x REL = relative displacement

and [MI, [C], and [K] are the mass, damping, and stiffness matrices, respectively

Subs ti tuting

Ix ABS} ={x REL}) + [L RB]{x B) (A-2)

yields

O i + [C]{(k I + [K]{x j = -[M][LRBIliB (A

whe re

X B = base acceleration

LRB = rigid body vectors referenced Lo base of structure

Using the hase- fixed modes, [1I , to transform to normal coordinates, we obtain

[{j}+ WC nn {~ R + 10 [,B (A-4)
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where

{XREL} [¢]{q} (A-5)

iF] = [T[MI [LRB (A-6)

and [] has been normalized such that

W T [ [YI ] (A-7)

To enable solution using the random response program, the base ex(-itation

vector i treated as part of a set of mixed coordinates, i.e.

H jx o 7I 0 7rxBj IK 
2

-n-nJ- K J {XB}

Using Eq. (A-2), we can recover the absolute accelerations in terms of the

response quantities from Eq. (A-8) as follows:

{XABS} = RB x J = [ATM] { J (A-9)

Loads can now be recovered with an acceleration based loads transformation

matrix, [LTM], as follows:

{Loads} = [LTM] [ATM] jB (A-10)

To recover statically-determinate base reaction forces, a force trans-

tormation matrix, [FTMI, can be used, i.e.

[FTM] = [LRBI [M] [ATM]

To assemble the complete recovery matrix, the separate recovery matrictes can

;i -, gmented rowwise.
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APPENDIX B

COMPUTER PROGRAM USER'S GUIDE

1. BASIC PROGRAM DESCRIPTION

The random response procedure (RRP) computer program was written in

FORTRAN 77 and was designed to run on CRAY X/MP or CDC mainframes. The code

consists of a main program, which does the bulk of the numerical manipulation,

and two subroutines-one which assembles the force PSD matrices at each

analysis frequency, and one which assembles the frequency reset se function

matrices at each analysis frequency. The program accepts input model and

forcing spectra data in a certain format, and solves the random response

equations described in Sections II and III to produce output in the form of

response power spectral density functions and root mean square (RMS) values.

2. INPUT DATA

A. General

The input data formats for the program were designed to be consistent

with other programs and subroutine libraries available and in use at The

Aerospace Corporation. These formats, although possibly in use only at

Aerospace, are straightforward and should pose no problems for the analyst.

B. Dynamic Model

The model data requirements are as follows:

T

(i) [ FI Force transformation matrix consisting of mode shape
vectors transposed and collapsed to the degrees of

freedom where forces are applied.

Size = NMODES x NFORCE

(ii) [2 nwn ]  Diagonal modal damping matrix.

Size = NMODES x NMODES
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(iii) [fW] Diagonal modal stiffness matrix.

Size = NMODES x NNODES

(iv) [TA] Recovery transformation matrix. Recovers parameters of
interest (loads, physical accelerations, etc.) when

post-multiplied by q or q. For example, if accelera-
tions are desired, [TA] = [41; if loads are desired,

[TA] = [LTM][].

Size = NLOAD x NMODES

The ordering of the modes should be from lowest natural frequency to

highest. Therefore, 'he rigid-body modes should be the first in the modal

matrices. The matrices should be on one permanent file or tape, specified

locally as "unit 32" in the Job Control Language (JCL), in the order listed

above, and with end-of-file markers between the individual matrices. The

matrices must be written in that file in Aerospace Corporation "MATRIX" format

(see Appendix C).

C. FORCING FUNCTIONS

The forcing functions must be available as force power spectral densi-

ties and cross-power spectral densities. These inputs should be on a tape or

permanent file specified locally as "unit 33" in the JCL. The default read

option assumes (for the case where cross-PSDs are used) that the cross-PSDs

are written on the same file as the auto-PSDs. This can easily be altered by

the user if he or she wishes to use auto-PSDs and cross-PSDs that are written

on separate files; however, the frequency spacing of the two files must be

consistent. The frequency band over which the PSDs are defined is arbitrary

(but should, naturally, be kept in mind when the analysis bands are deter-

mined). The default force PSD interpolation option assumes that the PSDs are

defined on a linear scale, however, this can be changed to accommodate input

taken directly from log-log plots, if need be.

The cross-PSDs read from the input unit are mapped to the appropriate

arrays representing the real and imaginary components of the SF matrix,

denoted "CF" and "QF' in Equation (23) of the main text, and denoted simply

as "C" and "Q" in the program. This mapping is accomplished in the "PSD"
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subroutine through the use of the arrays IROW and ICOL, which establish a

correspondence between the order that the cross-PSD data is written on the

input tape and the appropriate locations in the "C" and "Q" arrays.

rhe operation of the "PSD" subroutine, at each analysis frequency, is

as follows:

i) The main program passes the value of the analysis frequency to the

subroutine.

ii) The subroutine determines whether or not the analysis frequency

lies between the two previously defined interpolation limit

frequencies. Based on this determination, either iiia or iiib is

executed.

iiia) If the analysis frequency is within the limit frequencies, the

input spectra at those frequencies are interpolated to the analysis

frequency.

iiib) If the analysis frequency is greater than the previously defined

upper limit, the next record of input spectra is read from the

input tape, new lower and upper interpolation limit frequencies are

defined, and the input spectra are interpolated to the analysis

frequency.

iv) Using the resulting interpolated input spectra, arrays "C" and "Q"

are assembled through the use of the mapping arrays IROW and ICOL.

v) The arrays "C" and "Q" are passed back to the main program.

3. OUTPUT SPECIFICATION

The output from the program consists of:

a. Power spectral density functions of the responses defined by the

rows of the recovery matrix [TA].

b. Response RMS values derived from the response power spectral

densities.

The output is written to a tape or permanent file specified locally as "unit

34" using a binary, unformatted WRITE statement. Thus, for each analysis

frame defined by frequency F, the statement

WRITE (34) F, (R(M), M=I, NLOAD)
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is executed. After the PSD functions have been written to the output file, an

End-of-File marker is written. Following the EOF marker, the RMS values are

written to a single record with the statement

WRITE (34) (S(J), J=l, NLOAD)

The RMS file is followed by another EOF marker.

The printed output consists of:

i) A smmnary of the modal frequencies and damping values defining the

input dynamic model.

ii) The PSD values for the first 10 responses (this can be altered by

the user) at each analysis frequency.

iii) A summary of the RMS values for all the responses.
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PROGRAIM NOMENCLATURE

1. USER-SET PARAMETERS

A. Integer

NMODES = total number of normal modes in dynamic model

NRIG = number of rigid body modes

NFORCE = number of applied forces

NCROSS = total number of independent force cross-?SDs

NFREQ = total number of spectral lines in analysis

NLOAD = number of recovered responses (equal to the number of rows in
[TA I)

NPRINT = number of response PSDs to be printed on output (default
value = 10)

B. Float ing _P:Int

XMUF = model uncertainty factor (default = 1.0)

FZERO = frequency defining the first spectral line in analysis

Fl = cutoff frequency of first band

F2 = cutoff frequency of second band

F5 = cutoff frequency of fifth band
( 1 )

DFI = frequency increment to be used between FZERO and Fl

DF2 = frequency increment to be used between Fl and F2

DF6 = frequency increment to be used between F4 and FS

EPS = small parameter which directs program to update frequency incre-
ment if analysis frequency is within EPS of a band cutoff

frequency (default value = IE-6)

(1 )More bands can be used simply by defining the band cutoff frequencies, the

corresponding frequency increments, and by adding the appropriate number of
lines in the portion of the program where the decision is made to update the

frequency increment.
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C. Arrays

AIMP(NMODES) modal amplification factors (default values = 1.0)

IROW(NCROSS) cross-PSD row mapping array (used in conjunction with
ICOL(NCROSS))

[C()[.(NCROSS) - cross-PSD column mapping array (used in conjunction
with IROW(NCROSS))
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ARRAY DIMENSION GUIDE

1. Arrays whose size is V. Arrays whose size is based

based on NVuuEi: on a combination of parameters:

AF PF(NFORCE, NmODES)
Z TA(NLOAD, NMODES)

D
E Total = 32 arrays

DEN

TEMP 23 are 1-dimensional

A 2ZW 9 are 2-dimensional

Al (NMODES, NMIODES)

A2(NNODES, NMODES)
A3(N-MODES, NMODES)
A4(NMODES, NMODES)

A5(NMODES, NMODES)

II. Arrays whose size is

based on NFORCE:

SF

SFA

SFB

C(NFORCE, NFORCE)
Q(NFORCE, NFORCE)

III. Arrays whose size is

based on NCROSS:

SR
SI

SRA

SRB

SIA

SIB

IROW

ICOL

IV. Arrays whose size is

based on NLOAD:

x
S

SA

R
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ANALYSIS GUIDE

1. DETERMINING ANALYSIS BANDS AND FREQUENCY INCREMENTS

(Parameters, NFREQ, FZERO, Fl, F2,..., DF1, DF2 ....)

Determining the analysis band cutoff frequencies and associated frequency

increments is an nlllpurdLLt pjrt of setting ,,n a random response analysis run.

As was previously mentioned, the analyst can use as many bands as he or she

wishes, or, if constant frequency steps within bands are not required, a

steadily-increasing step size can be used from one end of the analysis spectrum

to the other, thus eliminating altogether the need for band-width and frequency

increment determination. In any event, the parameters that will dictate the

band cutoff frequencies and frequency increments will be the number of modes

in the model, the relative separation of these modes, their associated damping,

and the frequency spectrIum over which the forces contain energy. In turn, the

total number of analysis iterations, NFREQ, is determined by the value of the

cutoff frequencies and the associated increments.

The value of NFREQ must be determined by the analyst after he or she has

decided upon the appropriate cutoff frequencies and increments for the partic-

ular problem at hand. The primary contributor to analysis accuracy is the

step size, in the neighborhood of a mode, relative to the half-power bandwidth

of the mode. The user must make certain that the peaks in the response spectra

are adequately characterized, thus allowing their contribution to the total

area under the PSD curve to be accurately accounted for when RMS values are

computed. This concern is completely analogous to the importance of using an

adequate time increment when numerically integrating equations of motion in

the time domain using Runge-Kutta or other algorithms (see Ref. 10). Of

course, specifying frequency increments that are overly fine can result in

values of NFREQ that are inefficient, and can be, in some cases, prohibitively

expensive from a computational standpoint. This is the primary motivation for

leaving the computation of NFREQ as a manual exercise for the user, as opposed

to making it an automatic computation internal to the program.
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In general, it has been found that an adequate frequency increment in

the neighborhood of a mode allows for four spectral lines between the half-

power points of the mode's frequency response function. Thus, since the

half-power bandwidth for a lightly damped system is given by

Afhp = 
2 nfn

the analysis frequency increment should be no greater than

Af. = (nf /2

The analyst should specify a sufficient number of spectral lines so that

the analysis is performed far enough past the last mode of interest (i.e., the

highest frequency mode of interest) to include any measurable contribution

from the "tail" of that mode. This determination will also depend on the

mode's frequency and associated damping.

Again, the requirements for any particular problem can vary signifi-

cantly, and the above recommendations should not be construed as inflexible

constraints, but rather as general guidelines based on experience gained in

applications of the procedure to date.

2. DETERMINING FORCE CROSS-PSD MAPPING ARRAY COEFFICIENTS

(Parameter NCROSS and arrays IROW and ICOL)

The size of the force PSD matrix, ano consequently the size of the "C"

and "Q" arrays, is determined by the number of applied forces, NFORCE. Thus

the [ F matrix is collapsed to only those degrees of freedom at which

forces are applied. The diagonal elements of "C" wi -C' the auto-PSDs

(real) of the forces, whereas the off-diagonal elemea s t- and " ' ccntain

the real and imaginary components, respectively, of _tie force cross %' .

Since these PSDs and cross-PSDs are typically freqIency-dependent, .d each

frame, or spectral line of data, is written onto the input unit as a separate

record, a tractable method for assembling the "C" and "Q" arrays at each

analysis frequency is needed. A scheme involving mapping arrays IROW and ICOL
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(dimension NCROSS each) has been devised. Simply put, these arrays map the

cross-PSD data from the individual records on the input unit to the

appropriate ROW/COLUMN locations in arrays "C" rind "Q". This occurs within

the "PSD" subroutine, where the interpolation of the power spectra is also

performed.

Presently, the integer elements of IROW and ICOL are defined in a DATA

statement in the main program and are included in the common block CBPSD.

This method of defining the mapping arrays can be altered by the user; for

instance, the elements could be defined by supplemental data, which 'ould be

input to the program by corresponding READ statements. In any case, instruc-

tions for filling in the mapping arrays are more easily described after

explicitly defining the format in which the auto-PSDs and cross-PSDs must be

written to the input unit.

Each record must be written on the input unit using an unformatted

binary WRITE statement, such as

WRITE(33) F, (SF(K),K=l,NFORCE), (SR(K),K=l,NCROSS), (SI(K),K=I,NCROSS)

where

F = frequency defining the trame

SF = array of force auto-PSDs at F, ordered in agreement with [$F]

SR = array of real components of cross-PSDs at F, in an order
consistent with IROW & ICOL

SI = array of imaginary components of cross-PSDs at F, in an order
consistent with IROW & ICOL

If the analyst is using cross-PSD data for every possible force combina-

tion (i.e., no elements of "C" or "Q" are identically zero) then the maximum

number of independent cross-PSD functions will be needed. This number, given

by

NCROSS = NFORCE(NFORCE-I)/2
max
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is defined by the number of elements in the upper triangle, not including the

diagonal elements. The lower triangle elements are defined by the upper

triangle elements due to the Hermitian property of the force PSD matrix.

In many circumstances, particularly those involving a large number of

forces, the correlation, and thus the cross-PSDs, of forces distant from each

other, or in some other way unrelated, can be assumed to be negligible. In

cases such as these, the number of independent cross-PSD functions can be

significantly less than NCROSS . Often, in these cases, the analyst willma~x

arrange the forces such that the resulting force PSD arrays are banded.

The mapping arrays IROW and ICOL are needed whenever any force

cross-PSDs are used. The elements of the arrays are defined as follows:

a. IROW and ICOL are dimensioned as NCROSS (Be sure dimensions are

defined both in the main program and in the subroutines.)

b. IROW(K) and ICOL(K) instruct subroutine "PSD" to insert SR(K) and

SI(K) to the appropriate element locations in the "C" and "Q" array

(thus all elements of IROW and ICOL are integers).

c. Index K runs from I to NCROSS.

Example:

i) NFORCE = 3

ii) NCROSS = 2

iii) Only cross-PSD functions between forces I and 2, and 2 and 3 are

being used

The resulting mapping arrays would be defined as follows:

IROW(1) = i ICOL(l) = 2

IROW(2) = 2 ICOL(2) = 3

This would correspond to an input unit written as

WRITE(33) F,SF(l),SF(2),SF(3),SR(l),SR(2),SI(l),SI(2)

on a record-by-record basis.
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3. A WORD ABOUT COMIMON BLOCKS AND THEIR ASSOCIATED SUBROUTINES

The program uses two subroutines: Subroutine "PSD", which interpolates

the input force PSD functions to the defined analysis frequencies and assembles

the resulting force PSD arrays "C" and "Q", and subroutine "ADMIT", which

assembles the diagonal admittance function arrays "D" and "E" at each analysis

frequency. Associated with these subroutines are common blocks CBPSD and

CBADMIT. CBPSD contains variables NFORCE, NCROSS, IROW, ICOL, and I. CBADMIT

contains variables NMODES, NRIG, PI, AF, Z, and AMP.

The analyst is forewarned to make certain that

a. The COMMON statements in the main program and in the appropriate

subroutine are identical.

b. The arrays used in common block memory (IROW, ICOL, AF, Z, AMP) are

dimensioned correctly both in the main program and in the

subroutines.

Failure to heed these reminders will result in variable addresses being

assigned to inappropriate variables, resulting in an incorrect solution.

4. A WORD ABOUT RIGID BODY MODES, MODAL AMPLIFICATION, AND THE "ADMIT"

SUBROUTINE

Often the dynamic model of a system includes one or more rigid body

modes. The modal acceleration frequency response function for these modes is

simply the inverse of their associated modal masses. However, the displace-

ment frequency response functions will have a singularity at W=O, causing

the computation to "blow-up" at that frequency. Ergo, it is recomnended that

only the elastic modes be used in the model when displacement frequency

response functions are implemented.

Modifying the "ADMIT" subroutine to implement displacement frequency

response functions involves changing the two lines that read

D(J) = AMP(J)*(-(2*PI*F)**2)*(FJ**2-F**2)/DEN(J)

E(J) = AMP(J)*(-(2*PI*F)**2)*(2*ZJ*F*FJ)/DEN(J)
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to

D(J) = AMP(J)*(FJ**2-F**2)/DEN(J)

E(J) = AMP(J)*(2*ZJ*F*FJ)/DEN(J)

The analyst might also choose to amplify the effect of certain of the

modes. This can be accomplished through the use of the AMP array. AMP simply

provides a scalar multiplier for each modal frequency response function. As

such, the default setting for all elements of AMP is 1.0. AMP is dimensioned

to NMODES, and the analyst can alter any of the individual elements of AMP in

the main program, as long as it is done after the section of the program where

the arrays are initialized, and before the section of the program where the

random response calculation loop begins. These sections are clearly denoted

by comment cards.

5. TIMING ESTIMATES AND COMPILER CHOICE

Execution time is clearly dependent on the various parameters defining

the problem at hand. An exact relationship cannot, at this time, be estab-

lished. However, before running a full problem, it is suggested that the user

run a small test case by setting NFREQ to a small number, and by setting the

time request in the JCL to a small value. This will allow the user to verify

that the problem has been set up correctly, and will also enable him or her to

make a rough estimate of execution time for the full run. These check runs

can usually be put through the computer relatively quickly due to the low time

request.

At present, the two FORTRAN 5 compilers available at Aerospace, for use

on the CRAY X/MP computer, are the "CFT" compiler and the "CFT77" compiler.

The CFT77 compiler is newer and has more ANSI standard features. Both com-

pilers have been used to rut, the random response code, and it has been found

that, although the executable code produced by the CFT77 compiler runs fast

than that produced by the CFT compiler, the actual compiling of the source

code takes significantly longer with CFT77. This would indicate that it would

be preferable to use the CFT77 compiler for larger problems, where compile
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time is a small portion of overall CPU time, and the CFT compiler for smaller

problems, where compile time could be a significant fraction of the overall

execution time. Also, if the executable code is to be saved and used repeat-

edly, say with slightly different inputs in each case, then the CFT77 compiler

would be preferable. It is noted that the program is written with an objective

of exploiting the vectorization capabilities of the CRAY computer. Both of the

aforementioned compilers allow for this vectorization feature to be tilized.
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APPENDIX C

MATRIX TAPE FORMAT

General Description

The standard model file format used by the random response program is

termed the MATRIX format. A MATRIX tape may have any number of files, each in

similar format. Each file contains a single matrix in the format described

below. The data are written in a standard default, unformatted form.

File Structure

A,sume a matrix of size NROW by NCOL. It is written in MATRIX format as

follows:

Record I = Header record; length = 7 words

Words 1, 2, 3, 4 = zero

Word 5 = NROW

Word 6 = NCOL

Word 7 = zero

Records 2 through (NROW + 1) = Data records; length = (NCOL + 3)

Word I = row number

Word 2 = NROW

Word 3 = NCOL

Words 4 through NCOL + 3 i jow of data

Data followed by end-of-file

Example file for matrix of size (5 x 7)

Record 1 0 0 0 0 5 7 0

Record 2 1 5 7 Row l of data

Record 3 2 5 7 Row 2 of data

Record 4 3 5 7 Row 3 of data

Record 5 4 5 7 Row 4 of data

Record 6 5 5 7 Row 5 of data

EOF
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APPENDIX D

RANDOM RESPONSE COMPUTER PROGRAM
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JOB,JN=D$lPT$B,T=lO,MFL=500000.
ACCOUNT,AC=453301,US=18332.
ACCESS,DN=FT32,PDN=****,,*****.
ACCESS,DN=FT33,PDN=,**********.
,ASSION,DN=FT34,RF=IW,FD=CDC,CV=ON,MBS=5120,RS=5120.
CFT.
SEGLDR,GO.
REWIND,DN=FT34.
,DISPOSE,DN=FT34,DC=ST,DF=BB,MF=MB,TEXT='CTASK.SAVEPF,FT34,'

S'XXXXXXXX,ID=18332,ST=PF6.'.

*SAVE,DN=FT34,PDN=XXXX.

*EOR

PROGRAM RANDOM

THIS PROGRAM COMPUTES RESPONSE POWER SPECTRAL DENSITY FUNCTIONS
C (PSD'S) FOR A LINEAR MULTI-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO
C ONE OR MORE FREQUENCY-DEPENDENT FORCE PSD'S AND CROSS PSD'S.

A SUGGESTED REFERENCE IS ATM NO. 89(4533-01)-55:

'A MULTI-MODE RANDOM RESPONSE ANALYSIS PROCEDURE'
C
C APPENDIX 'B' OF THIS REPORT SHOULD BE HELPFUL AS AN ANALYSIS GUIDE

CC

c PETER BROUSSINOS AUGUST,1989

C.

I THE INPUTS TO THE PROGRAM ARE:

C 1. A DYNAMIC MODEL OF THE SYSTEM, IN AEROSPACE CORPORATION
( "MATRIX" FORMAT (SEE REPORT, ,IPENDIX C). THE MODEL
C CONSISTS OF
C
C A. FORCE TRANSFORMATION MATRIX CONSISTING OF MODE

C SHAPE VECTORS TRANSPOSED AND COLLAPSED TO THE

C DEGREES OF FREEDOM WHERE FORCES ARE APPLIED.
C
C B. DIAGONAL MODAL DAMPING MATRIX.
C
C C. DIAGONAL MODAL STIFFNESS MATRIX.
C
C D. LOAD TRANSFORMATION MATRIX WHICH RECOVERS
C PARAMETERS OF INTEREST (LOADS, PHYSICAL ACCELER-

C ATIONS, ETC.) WHEN POST-MULTIPLIED BY MODAL

C DISPLACEMENTS OR ACCELERATIONS.

57



C
C 2. FORCE PSD'S AND CROSS-PSD'S, IN AEROSPACE CORPORATION
C "TRP" FORMAT, WHICH IS DESCRIBED IN THE REPORT.
C
C
C THE OUTPUT FROM THE PROGRAM CONSISTS OF:
C
C 1. POWER SPECTRAL DENSITY FUNCTIONS OF THE RESPONSES
C DEFINED BY THE ROWS OF THE RECOVERY MATRIX.
C
C 2. RESPONSE ROOT-MEAN-SQUARE (RMS) VALUES DERIVED FROM
C THE RESPONSE POWER SPECTRAL DENSITIES.
C
C
C
C
C
C
C

C
C THIS SECTION CONTAINS THE COMMON BLOCK AND ARRAY DIMENSION STATEMENTS
C
C COMMON BLOCK CBPSD IS USED IN VHE PSD SUBROUTINE.
C COMMON BLOCK CBADM IS USED IN THE ADMIT SUBROUTINE.
C THE USER MUST MAKE CERTAIN THAT THE LINES ARE IDENTICAL IN THE
C SUBROUTINES. ALSO, THE ARRAYS THAT ARE USED IN THE SUBROUTINES
C MUST HAVE THEIR DIMENSIONS SPECIFIED EXACTLY AS THEY ARE IN THE
C MAIN PROGRAM.
C
C
C
C

COMMON /CBPSD/NFORCE,NCROSS,IROW,ICOL,I
COMMON /CBADM/NMODES,NRI' ,PI,AF,Z,AMP
DIMENSION AF(1i),Z(111),D(111),E(IlI),DEN(111),SF(22),

&X(1356) ,S(1356),SA(1356),SR(46),SI(46),SFA(22),SFB(22),
&C(22,22),Q(22,22),AI(111,111),A2(111,111),R(1356),
&A3(111,111) ,A4(111,11),PF(22,111) ,TA(1356,111),
&A5(111,111) ,SRA(46),SRB(46) ,SIA(46),
&SIB(46) ,IROW(46) ,ICOL(46),AMP(111),TEMP(111),A2ZW(I11)

C
C

C
C THE FOLLOWING SECTION IS FOR DEFINING THE FORCE CROSS-PSD
C MAPPING COEFFICIENTS. SEE THE REFERENCED REPORT FOR DETAILS.
C
C
C

DATA IROW/1,1,1,2,2,3,3,3,4,4,5,5,5,6,6,7,7,7,8,8,9,9,9,10,10,
&11,11,11,12,12,13,13,13,14,14,15,15,15,16,16,17,11,17,18,18,19/
DATA ICOL/2,3,4,3,4,4,5,6,5,6,6,7,8,7,8,8,9,10,9,10,10,11,12,11,
&12,12,13,14,13,14,14,15,16,15,16,16,17,18,17,18,18,19,20,19,20,20/

C

C
C THE FOLLOWING SECTION IS FOR DEFINING THE BASIC PARAMETERS:
C
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NPR INT= 10
xv,~ -1.00")

TH~iS )LI11UN ID FOR DEFINING iHE ANALYSIS BAND CU TOFF FREQUENCIES
AND THE ASSOCIATED FREQUENCY INCREMENTS:

FZERJlz0.
F1=.5
F2=5.
F:3= 10.
-4=2U.

DF1=,5
DF2- 01
DF3- 025
DF4=0.0b00
Dfs-5 .10000

-I13141592654
cp=000001

lilVI.AilZE ARRAYS:

c;

J; (K) =0.

CONTINUE

DO I K=1,NCLRCES
SRF(K)=C

SFB(K)=0.

SIA(K)=0.
SIB (K) =0
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SR (K) =0
SI (K) =0.

7 CONTINUE
DO 8 K=1,NLOAD
X(K)=O.
S(K)=O.
SA(K)=0.
R(K)=O.

8 CONTINUE
DO 9 K=1,NFORCE
DO 9 L=1,NFORCE
C(K,L)=0.
Q(K ,L) =0.

9 CONTINUE
C
C

C
C THE FOLLOWING SECTION ALLOWS THE USER THE OPTION OF SETTING THE
C MODAL AMPLIFICATION COEFFICIENTS TO VALUES OTHER THAN 1.00:
C
C
C DO 850 K=N1,N2
C AMP(K)=
C 850 CONTINUE
C
C

C

C

C 1 = PHIF ... FORCING MATRIX
C 2 =2*4ETA*OMEGA ... MODAL DAMPING
C 3 = (OMEGA)**2 ... MODAL STIFFNESS
C 4 = TA (OR TC) .... ACCELS=TA*QDD (LOADS=TC*QDD)
C
C

READ (32)
DO 800 K=1,NMODES

800 READ(32) JK,JK,JK,(PF(J,K),J=1,NFORCE)
READ (32, END=805)

805 READ(32)
DO 810 K=1,NMODES
READ(32,END=810) JK,JK,JK, (TE-MP(J) ,J=1,NMODES)

810 A2ZW(K)=TEMP(K)
READ (32, END=815)

815 READ(32)
DO 820 K=1,NMODES
READ(32,END=820) JK,JK,JK, (TEMP(J) ,J=1,NMODES)
AF (K) =SQRT (TEMP (K) )/ (2*PI)
IF(K.LE.NRIG) THEN

Z(K)=0.0
ELSE
Z(K)=A2ZW(K) /(2*2*PI*AF (K))

ENDIF
820 CONTINUE

READ(32,END=825)
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825 READ(32)
DO 830 K=I,NLOAD

830 READ(32,END=835) JK, JKJK, (TA(K,J),J=1,NMODES)
835 CONTINUE

C
C
C

DO 610 K=1,NMODES
610 PRINT 7000, K,AF(K),Z(K)

C

C THIS LOOP DOES THE RANDOM RESPONSE CALCULATION.
C EACH ITERATION CORRESPONDS TO A NEW SPECTRAL LINE.
C
C PARAMETER NCASE CAN BE USED IF ONE WISHES TO RUN MULTIPLE
C CASES PER RUN.

cc( DO 700 NCASE=I,
DO 12 ITAPE=1,4

12 REWIND ITAPE
DO 13 ITAPE=7,33

13 REWIND ITAPE

NLOAD1=NLOAD+I
WRITE(1) 0,0,0,0,NFREQ,NLOADI,O
F=FZERO-DF1
IF(NCROSS.EQ.0) GOTO 150
DO 100 I=I,NFREQ

C
C IF MORE ANALYSIS FREQUENCY BANDS ARE REQUIRED, CUTOFF FREQUENCIES
C BEYOND F5 AND FREQUENCY INCREMENTS BEYOND DF6 MUST BE DEFINED IN
C THE 'BASIC PARAMETERS' SECTION, AND THE APPROPRIATE ADDITIONAL
C LINES MUST BE APPENDED TO THE FOLLOWING SECTION, OR TO THE
c CORRESPONDING SECTION IN THE PORTION OF THE PROGRAM FOR NCROSS=O.
C

DF=DFl
IF(ABS(F-F1).LE.EPS .OR. F.GT.FI) DF=DF2
IF(ABS(F-F2).LE.EPS .OR. F.GT.F2) DF=DF3
IF(ABS(F-F3).LE.EPS .OR. F.GT.F3) DF=DF4
IF(ABS(F-F4).LE.EPS .OR. F.GT.F4) DF=DF5
IF(ABS(F-FS).LE.EPS .OR. F.GT.F5) DF=DF6

C
C
C

F=F.DF
C PRINT 1000,I,F
C

DO 490 M=1,NMODES
DO 490 K=1,NMODES
A 3(M,U-0.
A4(M,K)=0.

490 AS(M,K)=O.
DO 495 M=1,NLOAD

495 R(M)=O.
C
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CALL PSD (F,C,Q)
CALL ADMIT (F,D,E)

C
IF (NFORCE .01.NMODES) THEN
DO 500 Jz1,NMODES
DO 500 Mzl,NFORCE

Al1(M, J) =PF (M, J) *D(J)
500 A2(M,J)=PF(M,J)*E(J)

ELSE
DO 510, M=1,NFORCE
DO 510 J=1,NMODES

Al (MJ)=PF(M,J)*D(J)
510 A2 (M,J) =P F(M, J) *E(J)

ENDIF
C

IF(NFORCE.GT.NMODES) THEN
DO 520 M=1,NMODES
DO 520 J=1,NMODES
DO 520 K=1,NFORCE
DO 520 L=l,NFORCE

A3(M,J) = A3(M,J) + A1(K,M)*C(K,L)*A1(L,J)
A4(M,J) = A4(M,J) + A2(K,M)*C(K,L)*A2(L,J)

520 A5(M,J) =AS(M,J) + Al(K,M)*Q(K,L)*A2(L,J)
ELSE
DO 525 K=1,NFORCE
DO 525 L=1,NFORCE
DO 525 M=1,NMODES
DO 525 J=1,NMODES

A3(MJ) = A3(M,J) + Al(K,M)*C(K,L)*A1(L,J)
A4(MJ) = A4(M,J) + A2(K,M)*C(KL)*A2(L,J)

525 A5(M,J) = A5(M,J) + A1(K,M)*Q(K,L)*A.2(L,3)
ENDIF

C
IF(NMODES.GT.NLOADS) THEN
DO 530 M=d,NLOAD
DO 530 K=1,NMODES
DO 530 L=1,NMODES

530 R(M)=R(M)dTA(M,K)* ( A3(K,L)+A4(K,L)+A5(K,L)+A5(L,K) )*TA(M,L)
ELSE
DO 535 K=1,NMODES
DO 535 L=1,NMODES
DO 535 M=1,NLOAD

535 R(M)=R(M)+TA(M,K)*( A3(K,L)+A4(K,L)+AS(K,L)-AS(L,K) )*TA(M,L)
ENDIF

WRITE(l) I,NFREtQ.NLOAD1,F, (R(M),M=1,NLOAD)
WRITE(34) F, (R(M) ,M=l,NLOAD)

100 CONTINUE
GOTO 220

C

C

C LOOP FOR THE CASE WHERE NO CROSS-PSD'S ARE USED (NCROSS=-O)

C

150 CONTINUE
DO 200 I=1,NFREQ

C
DF=DF1
IF(ABS(F-F1).LE.EPS .OR. F.GT.F1) DF=DF2
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IF(AP')(F7-F-) .LE.EPS OR. F.GT.F2) DF=DF3
IF(AB'j:(F-F3) .LE.EPS OR. F.GT.F3) DF=DF4
IF(Ab-I'F-44).LE.EPS .OR. F.GT.F4) DF=DF5
IF(,ABcS rrl)L.EPS OR. F.GT.F5) DF=DF6

F=F
C PRINT 10011,I,F

DO) 2% , M= , NMODLS
DO0 ~'i K -I , NIM 0

* A3 iYV, K)
290 A4(kj,

DO 2,95, -,l1,NLOAD
29 5 R(M:YC

CALL (FC,(~
CA L. Au)MIT (F,D,E)

jf F I[ C I NYMCi>K) THEN

DO) M 1 N ORCE
DO j 1 N.YOPES

AI ,'A, J) =PF (M, J) -D(J)
35 A21 ,iJ) =Fi 0A, J) *(YI

* IF(NFORCE.GT.NMODES) THEN
DO 320 M=1,NMODES
DO 320 J=1,NMODES
DO 320 K=1,NFORCE

A3(MJ) = A3(M,J) + AI(K,M)*C(K,K)*A1(K,J)
320 A4(M,J) = A4(M,J) + A2(K,M)*C(K,K)*A2(K,J)

ELSE
DO 325 K=1,NFORCE
DO 325 M=1,NMODES
DO 32-5 J=1,NMODES

A3(M,J) = A3(M,J) + A1(K,M)*C(K,K)*A1(K,J)
25 A4(M,J) = A4(M,J) + A2(K,M)*C(K,K)*A2(K,J)
ENDIF

IF (NMODES . T. NLOAD) THEN
DO 330 M=1,NLOAD
DO 330 K=1,NMODES
DO 330 L=1,NMODES

330 R(M)=R(M)+TA(M,K)*( A3(K,L).A4(K,L) )*TA(M,L)
* ELSE

DO 335 K=1,NMODES
DO 335 L=I,NMODES
DO 335 M=1,NLOAD

335 R(M)=R(M)+TA(M,K)*( A3(K,L).A4(K,L) )*TA(M,L)
ENDIF

C
WRITE( '1) I,NFREQ,NLOAD1,F, (R(M) ,M=1,NLOAD)
WRIrE(34) F, (R(M) ,M=1,NLOAD)

200 CONTINUE
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220 CONTINUE
ENDFILE I
ENDFIL(: 34
REWIND I

C
C THIS SECTION INTEGRATES THE RESPONSE PSD'S TO PRODUCE THE RMS VALUES
C
C NOTE: THE FIRST TEN RESPONSE PSD'S WILL BE PRINTED AT EACH FREQUENCY
C STEP. THIS CAN 9rE CHA,4GED BY SETTING NPRINT TO THE DESIRED VALUE,
C AND BY MODIFYING THE FORMAT STATEMENT (LINE 4000) BY CHANGING THE
C INTEGER MULTIPLIER ON iHE INSIDE PARENTHESES.
C
C THE INTEGRATION ROUTINE USED IS 'TRAPEZOIDAL'. THIS TOO CAN BE
C ALTERED BY CHANGING THE WEIGHTING VALUES USED. HOWEVER, THIS IS NOT
C RECOMMENDED.
C
C
C
C

READ(1) Jl,J2,J3,J4,NROW,NCOL,JS
READ(i) Jl,J2,J3,F, (X(J),J=1,NLOAD)
PRINT 6000
PRINT 4000, 1,F ,(X(J) ,J=l,NPRINT)
DO 30 J=1,NLOAD

30 S(J)=X(J)*DFl/2.
C30 SAJ=()DI(.(*IF*4

NRW=NR OW-i
IC=i
DO 40 M=2,NRW

FPREV=F
READ(I) J1,J2,J3,F, (X(J) ,J=1,NLOAD)
W=2. *PI*F

PRINT 4000, M,F, (X(J) ,J=I,NPRINT)

IF(IC.EQl.i) THEN
WEIGHT=',.

ELSE
WEIGHT=2.
I C= 1

ENDIF
C

DF-=F--FPRLV
33 DO 35 J=1,NLOAD
35 S(J)= S(J)+X(J)*WEIGHfT*DF/2.

C35 SA(J)=$SA(J)*X()*WEIGHT*DF/(2*(W**4))
40 CONTINUE

RFAD(l) Jl,J2,J3,F, (X(J),J=,NLOAD)
W=2 .*PI*F

DF=F-FPREV
PRINT 4000, NROW,F, (X(J),J=1,NPRINT)
DO 45 J=l,NLOAD

45 S(J)= S(J)+ X(J)*DF/2
C45 SA(J)= SA(J)+ X(J)*DF/(2*(W**4))

DO 50 J=1,NLOAD
50 S(J)= XMUF*SQRT(S(J))

C50 SA(J)=XMUF*SQRT(SA(J))
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PRINT 20CJ,",NCASE,NFf'EQ,NDOF,NMOD[S,NRIG,NFORCE,NLOAD,XMUF
DO 60 J=1,NLOAD
Ph~iN[ 3100, J,S(J)

60 CONINUE

ENDFILE 34
700 CNINUE

C

1000 FORMAT(2X,'I= ',15,' ,F= ',F11.5)
2000 FORMAT('l.,2X,'NCASE =',13,', NFREQ =,4/

&2X,'NDOF = ',14,, NMODES = ',13,', NRIG = 'J13,', NFORCE=
&13,', NLOAD = ',14,', MUF = ',F6.2,//)

3000 FORMAT(2X,'RMS OF XDD ',14,' = ',E12.5,' = ',F7.3,' G')
3100 FORMAT(2X,'RMS OF DOF ',14,' = ',E12.5)
C
C
C TO PRINT MORE THAN 10 RESPONSE PSDS ON THE OUTPUT, MODIFY
C THE FOLLOWING FORMAT LINE (LINE 4000) BY SETTING 'N' TO
C AN APPROPRIATE NUMBER.
C
4000 FORMAT(1X,14,F8.2,10E12.4)

C4000 FORMAT(1X, 14,F8.2,10E12.4,/,N(12X,10E12.4))
C

6000 FORMAT('1', 3X, 'N',' F',9X,'PSDS OF THE RESPONSES',!!)
7000 FORMAT(2X,'MODAL FREQUENCY NO.',15,' =',FIO.3,' HZ,',' DAMPING

ARATIO = ,F7.4)
9000 FORMAT('1')

STOP
END

,UEBOUTINE TO CREATE PSD MATRICES AT EACH F

SUBROUTINE PSD(F,C,Q)
COMMON /CBPSD/NFORCE,NCROSS, IROW,ICOL, I
DIMENSION SF(2-) ,SFA(22) ,SFB(22),SR(46) ,SI(46),

&SRA(46) ,SR8(46) ,SIA(46) ,SIB(46) ,C(22,22) ,Q(22,22),
&IROW(46) JICOL (46)

C
L =N FORC E
LC=NCROSS
ITAP=33

C
IF (NCROSS .EQ .0)GOTO 200

*C
IF(I.GT.1)GOTO 10
READ(ITAP) FA, (SFA(K) ,K=1,L) ,(SRA(K),K=1,LC),(SIA(K) ,K=1,LC)
READ(ITAP) FB, (SFB(K) ,K=1,L), (SRB(K) ,K=1,LC) ,(SIB(K) ,K=1,LC)

10 IF(F.LT.FB)GOTO 20
GOTO 30
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20 DO 25 K=1,NFORCE
C** * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * *

C IF(SFA(K).EQ.0.00 .OR.SFB(K).EQ.0.00)THEN
C S F(K) =SFA (K) ((F-FA) *(SFB(K) -SFA(K))) /(FB-FA)
C ELSE
C XXPON=LOG1O (SFA (K)) ( (LOGlO (F) -LOGlO (FA))*
C & ( LOG1O(SFB(K) )-LOG1O(SFA(K) )/(LOG1O(FB)-LOG1O(FA))
C SF(K)=10.**XXPON
C ENDIF
C 25 CONTINUE

C

25 SF (K)=SFA (K) +( (F-FA) *(SFB(K) -SFA(K) )) /(FB-FA)
DO 27 K=1,LC

SR (K) =SRA (K). ((F-FA) *(SRB (K) -SRA (K))) /(FB-FA)
27 SI(K) =SIA (K) +((F-FA) *(SIB(K) -SIA(K))) /(FB-FA)

GOTO 100
30 FA=FB

DO 35 K=1,NFORCE
35 SFA (K) =SFB (K)

DO 37 K=1,LC
SRA (K) =SRB (K)

37 SIA (K) =SIB ( )
READ(ITAP) FB, (SFB(K) ,K=1,L), (SRB(K) ,K=1,LC), (SIB(K),K=1,LC)
GOTO 10

100 CONTINUE
C

DO 40 K=l,NFORCE
40 C -K, K)=SF (K)

DO 45 K=l,LC
C(IROW(K) ,ICOL(fK))=SR(K)
Q(IROW(K) ,ICOL (K) >zSI (K)
C (ICOL (K) ,IROW(K) )=SR (K)

45 Q (ICOL (K) ,IROW (K)) =-SI (K)

C THIc SFCfIGN IS FOR THE CASE WHERE NO FORCE CROSS-PSDS ARE
C BE~iNG USED (NCROQS = 0).

-0c, CONTINUE
IF(I.GT.1)GOTO 510

READ(ITAP) FA, (SFA(K) ,K=l,L)
RE.AD(ITAP) FB, (SFB(K) ,K=1,L)

510 IF(F.LT.FB)GOTO 520
GOTO 530

520 DO 525 K=1,NFORCE
C * * ** * * * * * * * * * * * * * * * * * * ** * * * * * ** **

C IF(SFA(K).EQ.0.00 .OR.SFB(K).EQ.0.00)THEN
C SF (K) =SFA (K) +((F-FA) *(SFB (K) -SFA (K))) /(FB-FA)
C ELSE
C XXPON=LOG1O(SFA(K))i( (LOG1O(F)-LOG1O(FA) )

C & ( LOG1O(SFB(K) )-LOGIO(SFA(K) )/(LOG1O(FB)-LOG1O(FA))
C SF(K)=iO.*XXPON
C ENDIF
C525 CONTINUE

525 SF (K) =SFA(K) +( (F-FA) *(SFB(K) -SFA(K) )) /(FB-FA)
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(1)10 60

530 FA=FB
DO 535 K=1,NFOR(L

SK :  SFA(K)=SFB(K)
READ(ITAP) B,,(SFB(K),K:I,L)
GOTO 510

600 CfONTINUE
C

DO 540 K=1,NFORCE
540 C(K,K)=SF(K)

C
993 RETURN

END
C

C

C SUBROUTINE TO CREATE ADMITTANCE MATRICES AT EACH F
C

SUBROUTINE ADMIT (F, D, E)
COMMON /CBADM/NMODES,NRIG,PI,AF,Z,AMP
DIMENSION DEN(111),D(111),E(111),AF(111),Z(111),AMP(11I)

DO 100 J=I,NMODES
FJ=AF (J)
ZJ=Z(J)
IF(J.LE.NRIG) GOTO 90

C PRINT 999, J,FJ,ZJ
C 999 FORMAT(1X,'J= ',14,' FJ= ',F7.3,' ZJ= ',F6.3)

DEN(J)=((FJ*,2-F**2)**2+(2*ZJ*FJ*F)**2)*(2,PI)*,2
IF(J.EQ.9)DEN(J)=O.

IF(DEN(J).EQ.0.) THEN
110 PRINT 200,J,DEN(J)

STOP
ENDIF

FHE FOLLOWING 2 LINES SHOULD BE ADJUSTED ACCORDING TO THE REPORT
IF [Ht USER WISHES TO USE DISPLACEMENT FREQUENCY RESPONSE FUNCTIONS
INSTEAD OF ACCE.ERATION FREQUENCY RESPONSE FUNCTIONS.

D(J) =AYP (J) * (- (2*PI*F) **2) * (FJ**2-F**2)/DEN(J)
E(J):AMP (J) - (- (2*PI*F) **2) * (2*ZJ*F*FJ)/DEN(J)

COTO 100
90 D(J)=1.

E (J) =0.
100 CONTINUE
125 CONTINUE
200 FORMAT(2X,'J= 'I5,2X,'DEN(J)= 'F10.5,' THE DENOMINATOR IN THE

&FREQUENCY RESPONSE FUNCTION = O',//,30X,'CHECK BASIC PARAMETERS',
&///,23X,'******. EXECUTION TERMINATED ,,,,,,,',///)

RETURN
END

*EOR
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